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For systems with finite phase space volume, the density of states can be viewed 
as a multiple of the probability density of the energy, when the phase space 
variables are independent uniformly distributed random variables. We show 
that the distribution of a random variable proportional to the sum of pairwise 
interactions of independent identically distributed random variables converges 
to a limiting distribution as the number of variables goes to infinity, when the 
interaction satisfies certain homogeneity requirements. The moments of this 
distribution are simple combinations of cyclic integrals of the potential function. 
The existence of this limit gives information about the structure function of 
some systems in statistical mechanics having pair-summable interactions, even 
in the absence of a thermodynamic limit. The result is applied to several examples, 
including systems of two-dimensional point vortices. 

KEY WORDS: Convergence in distribution; pair-summable potential; point 
vortices; statistical mechanics. 

1. I N T R O D U C T I O N  

If a the rmodynamic  system is isolated (the energy constant) ,  the thermo- 
dynamic  properties of the system are determined by the microcanonical  

ensemble. The fundamenta l  object is the structure function, which gives the 
density of states of the system as a funct ion of energy. Identifying volume 
with probabil i ty,  the structure funct ion can be viewed (up to a multi-  

plicative cons tant )  as the probabi l i ty  density function for the potential  
energy when the particle posit ions are regarded as independent ,  uniformly 

distr ibuted r andom variables. 

Many-par t ic le  systems in which the potential  energy can be expressed 
as the sum of interact ions between pairs of particles, and having finite 
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configuration space volume, are common in physics. The purpose of this 
paper is to show that for a certain class of interaction functions, the 
probability distribution of the potential energy per particle approaches a 
limiting distribution as the number of particles n goes to infinity. The 
moments of the limiting distribution are given explicitly, in terms of cyclic 
integrals of the interaction function. (The integrals are reminiscent of the 
cluster integrals which appear in the theory of imperfect gases, (11 but here 
the potential need not be short ranged.) Those functions associated with 
the system which depend on this distribution thus tend to limiting forms as 
n--* 0% even in the absence of a thermodynamic limit. If, however, the 
entropy density tends to a limiting function of the energy density when the 
size of the system is adjusted with n to keep the mean particle density 
constant, then these limits coincide with the thermodynamic limit. (2) 

The restrictions placed on the interaction function are quite mild. They 
essentially require that the interaction function be homogeneous and have 
zero mean, and that the moments of the energy distribution of the n-particle 
system be defined for all n. 

The next section of the paper is largely devoted to the statement and 
proof of Theorem 1. The proof is accomplished by computing the moments 
of the probability distribution of the n-particle potential function and 
finding the limits of these moments. A convergence test then establishes 
that these moments uniquely determine a limiting distribution. The appli- 
cation of the theorem to the statistical mechanical problem mentioned 
above is presented as Theorem 2. 

In Section 3 several examples are discussed. The first is a simple 
quadratic interaction for points on a circle, for which the rate of 
convergence to the limiting distribution is explored. Next the logarithmic 
pairwise potential, as appears, for example, in point vortices, line charges, 
and guiding center plasmas, is shown to satisfy the hypotheses of the 
theorem (in the periodic case). This system is particularly interesting 
because the limiting distribution has features which do not appear in the 
thermodynamic limit. (3~ A variation of the first example which is relevant 
to the distribution of eigenvalues of random matrices is also mentioned. 
The last example is a problem of integral geometry to which the theorem 
applies. 

2. L I M I T  T H E O R E M S  

The main result of this paper is the following theorem. 

T h e o r e m  1. Let M be a manifold and g a probability measure on 
M. Suppose f :  M x M--* R is a function with the following properties: 
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(a) f ( x , y )  = f ( y , x ) ;  (b) 0 = ~Mf (X ,  y )  dg (x )  for all y E M; 
(c) sup v~M (~Mf2 (x ,  y )  d g ( x ) ) <  oo; (d) every integral of the following 
form exists: 

fm f(xi,,xj,)'...'f(x4, Xjr) dg(Xl)'"dg(xn) (2.1) 

Let x I ..... x ,  be independent, identically distributed random variables 
with distribution g on M, and let Un denote the random variable 

1 
- ~, f ( x i ,  x j )  (2.2) 
n l<~i<j~n 

Then, as n--* 0% the sequence U n converges in distribution to a random 
variable U with moments 

#m = m! ~. [ ( I ,  j 2 n l )  e' ..... ( I ,r /2nr)e '] /[e,  ! . . . . . e r [ ]  (2.3) 

where 

I~ = I f (  x l '  x2) "... " f ( x k  - 1 ,  Xk ) f ( X k ,  X l ) dg(Xl  ) '  "-." dg(xk ) 

and the sum is taken over all collections of positive integers (nl ..... nr), 
(el,..., er) which satisfy 1 < n l  < ... <nr<~m and nlex  + -. .  + n r e , . = m .  

Remarks. 
Assumption (a) indicates that the "interaction" f depends only on 

unordered pairs of points; (b) is required to prevent the means of the 
variables Un from diverging; (d) ensures that the moments of the U, exist; 
and (c) is a condition which suffices to establish that the moments Pm 
determine a distribution. The last two conditions are satisfied by all bounded 
functions f ;  however, they are weak enough that many interaction 
functions for which the energy of a collision is infinite will also satisfy them. 
An example is given in the next section. 

At first glance, one might not expect Un to converge to a distribution, 
since it is essentially (n - 1 )/2 times the average of a number of values of f. 
Condition (b) of the hypothesis, however, requires that f have zero mean 
in a homogeneous way. If the evaluations of f were at independent points, 
the limiting distribution would be normal by the central limit theorem. 
Since the summands are not independent, the limiting distribution is in 
general not normal (and not even symmetric), and is determined by the 
interplay of f with the distribution of the points (xi, xj) in M 2. 
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The random variable U,, is an example of a U-statistic of order 
two.  (4'5) U-statistics have been widely studied by statisticians, but the 
explicit formulas for the moments of the limiting distribution are new. 15) 
Furthermore, the proof technique can be applied to random variables 
which are not U-statistics (e.g., the vortex lattice systems of Section 3). 

Proof of Theorem 1. The moments of the random variable Un are 
the expected values 

#,,(n) = (Um ) =n -m f(xi,  xj) (2.4) 
i 

A proof (combinatorial in nature) of the relation #m(rl)= [~m -~- O(1/n) 
is presented in Appendix A. It remains to show that these limiting moments 
#,, determine a distribution. A sufficient condition/6) is that the series 
~-~t~2mtm/(2m)! converges for all t in some nonempty interval. We will 
establish that, for some constant K, the following inequality is satisfied: 

/Z2m/(2m) ! ~< (16K:)"  (2.5) 

We begin by finding bounds for the integrals Ik. It is convenient to 
abbreviate f(xi,  xj) as f~, dg(xi) as dg,, and to adopt the convention that 
when the variables of integration in an integral are not specified, all 
variables present in an expression are integrated. Similarly, the domain of 
integration will be suppressed. 

Let K 2 =  sup.,.S]f(x,y)12dg(x). It is immediate that !121 ~< 
S ISfZ2 dgl[ dg2 <<.K 2. Using the Schwartz inequality, 

lI3l~<f ff,2f23dg2 .If131dgldgg<~K2flf131dgldg3 (2.6) 

Writing f13 as f~3" 1, the Schwartz inequality gives ~ If~31 dgl <.K, and 
hence I/3] ~< K3. 

The integral I~ is bounded in a similar way for higher k: 

I/hi ~ K 2 f  1f34 "... f,,~l 

 <K4f If56'---"f~ll ~ "'" ~ Kk (2.7) 

(When k is odd, a factor of 1 must be inserted at the last step.) This shows 
that the summand I~I .... �9 Ie~ which appears in the formula for ~m is bounded 
by K n'el+ ' +  .... =Km. Hence #2m/(2rn)! is bounded by K 2" times the 
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number of terms in the summation for /A2m. Each term corresponds to a 
distinct partition of the integer 2m into positive parts. Using a standard 
recursive formula (7) for the number of partitions, it is easy to show that this 
number is bounded by 4 2m. This establishes the desired inequality and 
proves that the limit of the distributions Un is a distribution. This 
completes the proof of Theorem 1. 

In applying the theorem to statistical mechanics, we interpret f(xi, x j  
to be the energy of the interaction between particles at xi and xj, and U, 
to be the energy per particle. 

Suppose now that the phase space M has finite volume. If ~b(E) 
denotes the volume of states having energy no greater than E, then the 
function f2(E)= O'(E)/(b(oo), the statistical weight, (2) or density of states at 
energy E, coincides with the probability density of the random variable 
Y4<jf(x~,xj), when the particle positions are independent, uniformly 
distributed random variables. 

T h e o r e m  2. Let M be a compact manifold, g the uniform probability 
measure on M, and suppose M, g, and f satisfy hypotheses (a)-(d) of 
Theorem 1. If the potential energy of the n-particle system with state space 
M is given by Z,<jf(xi, xj, then in the limit of large n, the energy-density 
statistical weight function f2n(E/n ) of the microcanonical ensemble equals 
the probability density with moments #m' 

3. A P P L I C A T I O N S  

The result of Section 2 shows that the distribution of U, is essentially 
independent of n for large n. As a simple example, let M be the unit interval 
with ends identified (circle). Figure 1 shows the graph of a quadratic inter- 

g(x)=50(x-i/8) (x-3/8 on [0,3/8] 

2- 

1.5- 

i- 

0.5 

I I I J5 
�9 . . 0.4 O. 

Quadratic potential function, f(x, y)=g(d(x, y)); d=distance along the circle 
(i.e., arc length). 

-0 .  

Fig. 1. 
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Quadratic Potential 
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Fig. 2. Density estimates for the quadratic potential for n = 3, 5, 10, 20, 50, and 200. The 
height of the peak of the graph decreases with increasing n. The graphs for n = 20 and n = 50 
are indistinguishable on this plot. 

action function (resembling a Lennard-Jones potential) which depends 
only on the distance (arc length) between points in M. Figure 2 shows the 
estimated distribution of Un for several values of n. The curves were 
generated by a nonparametric density estimation technique based on 
splines.(8) Notice the rapid rate of convergence in n of the distribution curves. 
We also give a table of estimates/ira of the moments of the distributions for 
various n derived from the simulations (Table I). The estimates are based 
on a sample size of 200,000 points for each n. By grouping the data into 
20 groups of 10,000, estimates of the variance have been obtained. As the 
table shows, good estimates of the moments higher than the fourth require 
a much larger sample size. This can be very time consuming for large n, as 

Table  I. M o m e n t  Est imates fo r  the  Q u a d r a t i c  Po ten t ia l  a 

n ~2 113 /2~ ~i5 ~6 

5 0.222 _+ 0.004 0.138 + 0.007 0.28 + 0.02 0.48 + 0.06 1.2 + 0.2 
10 0.246+0.006 0.159_+0.015 0.35__+0.04 0.62_+0.12 1.5 +0 .4  
20 0.260__.0.006 0.172+0.014 0.39+0.05 0.8_+0.2 2.1-+1.0 
50 0.268 + 0.005 0.180 + 0.013 0.42 __+ 0.04 0.7 _+ 0.1 1.9 _+ 0.4 

200 0.273+0.004 0.185_+0.010 0.42+0.04 0.8+0.1 2 .15+0.6  

Moment  estimates _+ 1 standard deviation. 
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the computational effort of the simulation is O(n2). In contrast, the 
moment formula in Theorem 1 require the evaluation of a limited number 
of integrals for each moment, which in some cases can be evaluated exactly. 
[-An example is f (x,  y) = cos 2z(x - y), for which all integrals are powers 
of two. ] 

The conditions (c) and (d) of the preceding theorem are obviously met 
by bounded interaction functions f,  but many systems of interest are 
governed by potentials which are unbounded for collisions. A logarithmic 
singularity is an example which occurs in many physical systems; we 
concentrate here on the periodic case. (9) If point vortices of unit strength 
are arranged in a pattern in the plane periodic in two directions, the 
configuration space becomes that of n points in a torus (plane modulo 
lattice) and the energy density of the configuration is proportional 
to E = (1/2) log n + (l /n) Zi<j f (x , ,  xj), with f (x,  y) = C log I x -  y[ + (an 
even analytic function of x - y ) .  (1~ Clearly, Theorem 1 can be used to 
approximate the distribution of E for large n if the hypotheses (a~(d)  can 
be justified. Condition (a) is immediate, and (b) is established by a simple 
symmetry argument (see Appendix B). Because M is a torus, every integral 
~.f2(x, y)dg(x) in (c) has the same value. Finally, (d) can be shown to 
hold using the fact that the function r [log r] ~ has a removable singularity at 
r =  0 for positive ~. Thus, a limiting distribution exists for E - ( 1 / 2 )  log n, 
which can be used to approximate the distribution of energy in large but 
finite systems. This of course is not the same as the thermodynamic limit, 
which because of the log n term depends only on the values of the limiting 
distribution near - ~ .  As a result, the two limits are qualitatively different. 
In particular, all finite systems at energies above (const + �89 log n) are in a 
negative temperature state, while no such states exist in the thermodynamic 
limit.(3) 

There are other systems related to this vortex lattice system which 
also satisfy the conditions of Theorem 2. If the vortices are given either 
positive or negative unit circulations F1,...,Fn, then the interaction 
becomes FiFjf,~. Interestingly, the limiting distribution exists and is 
independent of the choice of circulations, since the moments are computed 
in terms of integrals over cycles, which involve only the circulations 
squared. If the logarithm in the interaction function is replace by the 
modified Bessel function K0 (which still has a logarithmic singularity at the 
origin), a system of flux lattices in a type II superconductor is modeled. (9) 

Nonperiodic configurations of point vortices must be constrained in 
some way in order to obtain a configuration space of finite volume before 
Theorem 1 can be applied. For  example, if the vortices are taken to lie on 
a circle, one obtains a system that has been investigated in conjunction 
with the distribution of eigenvalues of matrices with random entries. (11~ 
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Finally, consider the following geometric construction. Let x~ ,..., x~ be 
n points on the sphere M of radius r in R 3. Connect these points with great 
circle arcs to form a complete graph on the sphere. Let p~ denote the 
product of the lengths of the arcs extending from x~, and g the geometric 
mean of the p~: 

1 g =  (I~ P~)~/~ = d(x~, xj) (3.1) 

If the positions of the vertices are independent uniformly distributed 
random variables, then the moments of the distribution of log g can be 
found for large n by applying the theorem when the radius r takes that 
value for which the mean of log g is zero. 

APPENDIX  A 

Let c~ denote a collection of integers i~ ..... ira, j~ ..... Jm taken from the 
set S, = { 1,..., n } with ik < Jk, and 

f~  = f~,J~ """ " f ~ i ~  = f ( x i , ,  x j O . . . .  . f (x~m,  x ~ )  

We compute the moments 

~m(n) = 2 ----=n m 2 ( f~)  (AI) 
l ~ t < j ~ n  oc 

By property (b) of the hypothesis of the theorem, ( f ~ ) = 0  if 
contains any integer value only once. Moreover, if J '  is the collection of 
those ~ in which every integer value that appears, appears more than once 
and at least one value appears more than twice, then n -m Z ~ J ,  ( f ~ )  is 
O(1/n): all the integrals ( f ~ )  are bounded by hypothesis (d), and the 
cardinality of J' is the number of ways of distributing fewer than m values 
from Sn among the 2m integers which constitute e, a quantity which is 
O(nm-1). 

Consider now the sum n -m Y ~ j  ( f ~ ) ,  with J the collection of ~ in 
which each integer value that appears, appears exactly twice; the argument 
above shows that #m(n)=n  m z ~ j ( f ~ ) + O ( 1 / n ) .  Each f~ can be 
identified with an edge-valued graph with m ordered nodes and two edges 
per node, that is, a collection of cycles with orders totalling m. The edges 
represent the integer values in e, and the nodes represent the factors 
f(xik,  xj~). (See Fig. 3.) Note that if f~ and f~ have the same graph but 
different integers assigned to the edges, then ( f ~ ) =  ( f ~ ) .  The integral 
depends only on the graph identified with it, in particular, only on the 
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Fig. 3. 

3 7 
2 

1 

2 
f13 f37 f17 f24 

f13 f56 f37 f56 f17 

1 

The association of f~ with a graph having m ordered vertices and integer-valued 
edges. Note that (f~)= 1213 in both instances. 

number of cycles of various orders. Thus, ( f ~ )  can be expressed in terms 
of the cyclic integrals 

I k = f  A 2 f 2 3 " " ' ' f k  ~ , k L '  (A2) 

Specifically, 

( f ~ )  = Iel -... -Ie; (A3) 

for some integers nk, ek satisfying n~e~ + . . .  + n r e , = m .  Consequently, 

n-r  Z =E C (n, e) Iel .....12 (A4) 
~ E J  

The sum is taken over all collections of positive integers such that 
1 < n l  < . . .  < n r < ~ m  and n l e l  + . . .  + n r e r = m .  The coefficient Cm(rl , e)  is 
equal to n - m  times the number of ~ e J  having the graph consisting of 
exactly e k copies of the cycle of order nk, 1 ~< k ~< r. We now compute this 
coefficient. 

Given a graph, one obtains an associated c~ by choosing m integers 
from Sn, assigning these integers to the edges of the various cycles of the 
graphs, and then assigning the nodes to the m factors of f=. This can be 
done in N =  n! m ! / ( n - m ) !  different ways, but not all resulting in distinct 
~. (See Fig. 4.) For each cycle of order k >  2, N overcounts by a factor of 
2k, the number of rotations and reflections of the cycle. Furthermore, the 
e cycles of order k are indistinguishable, so that N overcounts by a factor 
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Fig. 4. 

f14 f12 f23 f 3 4 

f14 f12 f23 f34 

1 ~  4 ~ f14 f12 f23 f34 

Two ways of assigning integers to edges and nodes to factors which yield the 
same f=. 

of e!. Thus, N must be divided by (2k)ee!. Similar considerations when 
k = 2 result in the same factor. 

We conclude that 

n!m! Cm(n, e)= [(2nl)elel!..... (2nr)erer ! ] - 1  nm(n--m)! 

=m![(2nl)e~ex ! .....(2nr)erer!]-t +O(1/n) (A5) 

Thus, #re(n) = #m + O(1/n). 

A P P E N D I X  B 

This Appendix establishes property (b) for the vortex lattice potential 
of Section 3. 

Given a configuration of vortex lattices with positions zl ..... z, and 
circulations Fa ..... F,,, the expression for the total kinetic energy in a rotating 
reference frame (m) can be divided by n and rearranged to give the following 
formula for the energy per vortex: 

/ In e \  E _  1 E V f  JfiJ+ P 2 [ E 1 - - ~  ) (B1) 
H l~ l<~i<j<~n 
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with 

1 
fij = f (z i ,  zj) = - ~--~ [ln lao(Zi- zj)l 2 _ ~p I z i -  zjl 2] + 2EI (B2) 

The cutoff radius ~ is referenced to a unit cell of unit area. An expression 
for energy density is obtained by replacing ~ by 8n-1/2 and suppressing the 
e term, 

_ = _ ( In n'~ en nlEr'rj j+r2 e'+W) (B3) 

Henceforth we assume all circulations are unity. 
The energy density so computed has the same value for all arrangements 

of vortices into sublattices L/n containing n 2 vortices per unit cell, n ~> 1. 
Thus, n -2 5Zf~j= - ( l n  n2)/87r. But by the symmetry of the configuration, 
n-ZZfij=(1/2)Zk~lflk. This yields the identity Z f l k = - ( l n n 2 ) / 4 7 r ,  
which can be used to determine the (improper) integral of f :  

f (x ,y)  dx= f(x,O) dx= lira n ~ f ~ k = 0  (B4) 
r t ~  

A C K N O W L E D G M E N T S  

This work had its beginning in joint work of Kevin O'Neil and 
Laurence J. Campbell on negative temperature states of vortex systems. (12) 
Figure 2 was produced with the help of software written by Kevin 
Gehringer. 
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